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Abstract. We study hydrodynamic dispersion in flow through a disordered porous medium. 
The main goals of the paper are to investigate the condition(s) under which a convective- 
diffusion equation (CDE) cannot describe dispersion processes and to investigate the effect 
of the disordered morphology of the pore space on dispersion processes. We first use 
simple models of porous media and study dispersion processes analytically and compare 
the results with the predictions of the CDE.  The results show that the morphology of the 
porous medium can strongly affect dispersion processes. We then use a Monte Carlo 
simulation approach to study dispersion processes in random network models of porous 
media which are made of interconnected capillary tubes with distributed effective radii. 
A percolation network is used as a prototype of porous media with disordered topology. 
We show that, as the percolation threshold X, of the network is approached, there exists 
an anomalous and length-dependent dispersion regime that cannot be described by the 
CDE. We propose a generalisation of the Gaussian distribution to describe dispersion in 
the anomalous regime, and confirm it by Monte Carlo simulations. We also derive the 
appropriate scaling laws that relate dispersion coefficients to the length of the system and 
show that, for large systems near X,, dispersion coefficients obey universal scaling laws. 
These scaling laws are derived and confirmed by our Monte Carlo simulations. We then 
extend the simulations to dispersion in the flow of two immiscible fluids in porous media 
and discuss the applicability of percolation processes to describe two-phase flow and 
dispersion in porous media. We argue that percolation processes can be used to describe 
multiphase flow and dispersion in porous media, contrary to the recent claim of Thompson 
et al. The implication of the results for macroscopically heterogeneous porous media is 
also briefly discussed. 

1. Introduction 

When two miscible fluids are brought into contact, with an initially sharp interface, a 
transition zone develops across the initial interface and the two fluids slowly diffuse 
into one another. As time passes, the original interface becomes a diffused mixed 
zone, the composition of which changes from one pure fluid to the other. This mixed 
zone arises because of diffusion of the molecules of the two fluids. During this process 
there is no equilibrium except that of one fluid uniformly distributed throughout the 
other. If one assumes that the volume of the two fluids do not change upon this mixing 
process, then the net transport of one of the fluids across any arbitrary plane can be 
represented by Fick's second law of diffusion 

aC/at = DV'C. (1) 
Here C is the concentration, t is the time and D is the molecular diffusion coefficient. 
The mixing process described above takes place whether or not the two fluids are being 
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convected through the medium. However, if the fluids are flowing, then there may be 
some additional mixing of a different sort: convective mixing. This mixing process, 
which is caused by a non-uniform velocity field, which in turn may be caused by the 
morphology of the medium, the fluid flow condition and chemical or physical interac- 
tions with the solid surface of the medium, is called hydrodynamic dispersion. This 
phenomenon is important for a wide variety of processes and has witnessed considerable 
research activity during the past several decades. Some examples where dispersion 
phenomena are important are enhanced recovery of oil, salt water intrusion in coastal 
aquifers, in situ study of the characteristics of an aquifer and the pollution of surface 
waters because of industrial wastes. Dispersion phenomena also occur in flow in 
packed-bed chemical reactors; this has been studied extensively by chemical engineers 
for a long time (see, e.g., Aris and Amundson 1957). 

Dispersion processes are sensitive to the structure of the medium in which the 
transport and mixing processes take place. Dispersion in a single capillary tube of 
constant or varying cross section behaves very differently from that in a disordered 
porous medium. In a disordered porous medium, the variation in the orientations of 
flow passages and the coordination of the junctions, which result in wide variations 
in the length of the streamlines, together with the variations in the geometry (shapes 
and sizes) of pores and the local pressure gradients, force a chaotic nature on the 
pore-level velocity field of the flowing fluid, whereas the velocity field within a single 
tube is not chaotic at all. Therefore, a collection of dynamically neutral fluid particles, 
which is being mixed with a flowing fluid, is convected across the porous medium with 
a broad distribution of transit times, i.e. the times that the particles spend to travel 
throughout the medium. Moreover, if the medium is poorly connected, e.g. if the 
medium can be represented by a percolation cluster (Staffer 1985) slightly above the 
percolation threshold X,, its topology (connectedness) can greatly aff ect the distribution 
of transit times, because in a percolation cluster near X ,  there are many slow paths 
that the particles can take. Consequently, if we characterise hydrodynamic dispersion 
with a distribution of transit times, the structure of the distribution and its different 
moments can yield information on both the morphology of the medium and the mixing 
process. One goal of this paper is to study the effect of the morphology of a porous 
medium on the basic dispersion processes and the associated distribution of transit 
times and its various properties. We study dispersion processes in various systems 
with different microstructures, ranging from a single capillary tube to a random network 
of interconnected pores near its percolation threshold, and investigate the effect of 
various structural parameters, such as the length of the medium and its state of 
connectivity, on hydrodynamic dispersion. In particular, we will study dispersion 
phenomena in flow through a random network near the percolation threshold X , .  
According to percolation theory, transport properties of disordered media obey uni- 
versal scaling laws near the percolation threshold. These scaling laws are often 
independent of the microstructure of the media. Thus, we shall investigate the possible 
universal scaling laws that may describe dispersion near X,.  

Macroscopic modelling of dispersion processes in disordered and isotropic porous 
media is usually (see, e.g., Whitaker 1986 and references therein) based on the convec- 
tive-diffusion equation (CDE) 

-+ a c m  v; vc,=DLa2c,+D,v:c, 
at ax 

where V, is the macroscopic mean velocity, C, is the macroscopic mean concentration 
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and V i  is the Laplacian in transverse (perpendicular to the mean flow) directions. 
Thus the basic idea is to model dispersion processes as anisotropic diffusional spreading 
of concentration, the diffusivity being the longitudinal dispersion coefficient D L  (in 
the direction of mean flow) and the transverse dispersion coefficient DT. Another goal 
of this paper is to investigate the conditions under which dispersion processes cannot 
be represented by the CDE. 

Dispersion is said to be macroscopically diffusive if it obeys the CDE. If a particle 
population is injected into the medium at the point f o = ( x o , y o ,  zo) at t =0,  for 
macroscopically diffusive dispersion the probability density P (  5, t )  obeys the Gaussian 
distribution 

where P ( f ,  t )  df is the probability that a particle is in a plane between f and f + d f  
at time t ,  where f = ( x ,  y ,  z ) .  P ( f ,  t )  is proportional to C/Co, where CO is the concentra- 
tion at t = 0 and, therefore, equation (3) represents a solution of equation (2). If one 
defines Q ( 6  - Lo, t )  dt  as the probability that a particle beginning in the plane at lo 
will cross, for  theJirst time, a plane at l between t and t + dt, then, from equation (3), 
one can easily obtain (Sahimi et a1 1986b) 

~ ( r - 6 ~ ~  t )  = 1 ~ - 5 ~ 1 ( 4 ~ ~ , t ~ ) - ' / ~ e ~ ~ [ - ( 5 - 5 , -  v , o 2 / 4 ~ , t i  (4) 

where D, and V, are the dispersion coefficient and the mean flow velocity in the 5 
direction, respectively. Various moments of Q, the first passage time distribution 
(FPTD), yield information about the flow field and the dispersion processes. For 
example, 

( t )  = L/ v, ( 5 )  

( t 2 )  = ( t)'( 1 + 2 D,/ LV, ) (6) 

and 

where L = 5 - lo. In general, we can easily show that ( t )  and (t") are related, where 
n > 1 is any integer number and, to the leading order, one has ( t " )  - (t)". Of course, 
this is true if the CDE is applicable and, therefore, one way of showing that the CDE 

may not describe dispersion processes in a certain medium is to show (Koplik et a1 
1988) that ( t " )  is not simply related to ( t )  and one needs to have more information to 
describe various moments of the FPTD. This will be discussed later in 5 4. 

Many authors have studied dispersion processes in porous media using a wide 
variety of techniques and certain models of pore space (for a review see Fried and 
Combarnous (1971) and Sahimi (1984a)). For example, Brenner (1980) developed a 
general theory for determining the dispersion coefficients in spatially periodic porous 
media and showed that in the limit of long times the dispersion of tracer particles 
obeys a CDE. Carbonell and Whitaker (1983) presented a volume average approach 
for calculating the dispersion coefficients and carried out certain computations for a 
two-dimensional spatially periodic porous medium (Eidsath et a1 1983). However, 
most real porous media do not have a spatially periodic structure and, although the 
results of Brenner (1980) and Carbonell and Whitaker (1983) are in agreement with 
some experimental data for dispersion in spatially periodic porous media (see, e.g., 
Gunn and Pryce 1969), their general applicability is limited. For example, the results 
of Eidsath et aI (1983) for the transverse dispersion coefficient are much smaller than 
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the experimental data, while the predicted longitudinal dispersion coefficient is some- 
what too large. This is not surprising, as in spatially periodic porous media no 
streamlines meander more than a unit cell transverse to the flow direction, so that 
transverse dispersion is little afff ected by flow, while longitudinal dispersion resembles 
that for dispersion in a capillary tube. Thus DT is underestimated, while D, is 
overestimated. 

Saffman (1959) represented the microstructure of a porous medium as a network 
of interconnected capillary tubes. If we define a PCclet number by Pe = V,d/ 0, where 
d is a characteristic length in the medium (e.g. a grain size), then Saffman showed 
that at high Pe and at very long times, D L / D  grows as Pe In Pe. This agrees with 
many sets of experimental data (see Perkins and Johnston 1963) for dispersion in 
consolidated porous media, for which a network of capillary tubes provides a reasonable 
model (see the discussion below). However, Saffman’s approach is a mean-field 
treatment of the problem and is not appropriate for percolation networks. We shall 
show in this paper that, if a porous medium is near its percolation threshold, DL/D 
would grow as Pe’. This quadratic dependence arises because of the existence of many 
dead-end branches in which there is no flowing fluid, and from which a tracer particle 
can escape only by molecular diffusion. Koch and Brady (1985) have shown that a 
quadratic dependence of D L / D  on Pe can also arise in consolidated porous media, 
if there are regions of pore space in which the velocity field vanishes. However, the 
approach of Koch and Brady (1985) cannot be used for percolating systems that are 
of interest here, because it cannot predict correctly the non-analytical behaviour of 
dispersion coefficients and transport properties of porous media such as diffusivity 
and permeability near X ,  (see below). 

This paper is organised as follows. In § 2 we study analytically dispersion processes 
in systems with relatively simple microstructures to gain insight about the effect of the 
microstructure of the system on the mixing process. In particular, we use statistical 
methods to derive the FPTD of the mixing process. The deviation between this FPTD 

and that predicted by the CDE, equation (4), is a measure of the departure of the 
dispersion process from that described by the CDE. In § 3 we describe a Monte Carlo 
( MC) simulation method which we use for studying dispersion processes in disordered 
porous media. We represent the porous medium by a square or a simple cubic network 
of interconnected cylindrical tubes, the effective radii of which are distributed according 
to a probability density function (PDF) f ( R ) .  Section 4 contains the results of Monte 
Carlo simulations of dispersion processes in the random networks. In particular, we 
study dispersion processes near the percolation threshold of the networks and obtain 
the appropriate scaling laws for dispersion coefficients and their dependence on the 
mean flow velocity and the Peclet number. We also study the effect of topological and 
geometrical disorder on the dispersion process, and investigate the effect of the size 
of the system on dispersion coefficients. Section 5 extends the simulations to dispersion 
in flow of two immiscible fluids (e.g. oil and water) in a porous medium. The paper 
is summarised in 0 6 where we also discuss dispersion processes in more complex 
systems. 

2. Dispersion in systems with simple microstructure 

The simplest system in which one can have a non-uniform velocity field, and in which 
dispersion processes can be studied, is a straight tube of length b. If we assume that 
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the flow is laminar, then the velocity field is given by 

V=2Va[1-(r /R)’]  ( 7 )  

where R is the radius of the tube and r is the radial position. We now inject into the 
tube a population of dynamically neutral particles which are miscible with the flowing 
fluid in the tube. However, the injection is not uniform across the cross section of the 
tube, since it results in an infinite mean transit time for exiting the tube (because V = 0 
on the wall). Rather, although the flux is constant, the position of a streamline on 
which a particle is placed is weighted with the speed of the streamline. Thus the travel 
time for a particle is b/ V. Since the fraction of the area between r and r + d r  is r d r /  R’, 
then the probability that a particle is on a streamline between r and r + d r  is 
(2V/ V,)(r dr/R’). Thus, if Q(b, t )  is the distribution of transit times, we have 

Q(b, t )  = b2/2V:t3 (8) 

which is valid for t 2 b/2 V,. Clearly, Q( 6, t )  is very different from equation (4), which 
means that this type of convective mixing cannot be described by the CDE. Note that, 
while the first two moments of Q(b, t )  exist, they are not directly related to one another. 
We now define the dispersion coefficient DL by 

i.e. DL is the temporal average of the ratio of the squared deviations of the mean 
particle position (which is Vat) from its position at time t which is fixed at b, and the 
time (see, e.g., Hill 1977). We then obtain 

D L  = a bV, (10) 

and, therefore, DL+ CO as b + CO. Note that DL is linearly dependent on V,. Although 
this is a very simple example of dispersion due to convective mixing, we shall show 
in 0 4 that the analysis is equally applicable to dispersion in flow through certain 
networks of interconnected tubes. 

In practice, there is always some molecular diffusion which transfers the particles 
from one streamline to another and, therefore, the mixing of the particles with the 
flowing fluid is the result of the competition between convective mixing and molecular 
diffusion. This problem was first studied by Taylor (1953) and Aris (1956). Starting 
from the CDE, they showed that DL is given by 

DL= D, + R2Vz/48D, (11) 
where the subscripts a and r signify the fact that D, and D, are the contributions of 
axial and radial molecular diffusion, respectively (of course, D, = D, = D). If we 
define a Piclet number Pe by Pe = RV,/D, equation (11) can be written as 

(12) DJ D = 1 + & Pe’. 

Note that in Taylor-Aris dispersion DL depends quadratically on V,. The first passage 
time distribution for Taylor-Aris dispersion in capillary tubes is given by equation (4), 
since Taylor and Aris showed that if the length of the tube is long enough, at large 
times C,, the mean concentration over the cross section of the tube obeys a diffusion 
equation 

a C, a’ C ,  
a t  ax: 
-- - DL- 



3838 M Sahimi and A 0 Imdakm 

where x, = x - Vat. Thus, as discussed above, one may identify DL as an effective 
diffusion coefficient. We may reinterpret equation (11) and rewrite it as 

DL = longitudinal (axial) mixing + axial convection/ transverse mixing. (14) 

Therefore, axial convection and longitudinal mixing (which, in this case, is molecular 
diffusion) enhance dispersion, whereas transverse mixing (in this case, radial molecular 
diffusion) reduces it. This is true about any system. For example, in a porous medium 
where transverse mixing is present, DL may be reduced as compared with its value in 
a single capillary tube where transverse dispersion does not exist at all. 

Diffusion processes in a given system are often equivalent to random walks of some 
particles in the same system, with the probability of finding a particle at a point of 
the system at a given time being proportional to the concentration of the diffusing 
material at that point. Since dispersion processes such as those studied by Taylor and 
Aris can sometimes be described by a diffusion equation, it may be instructive to 
develop a random walk model which can describe these processes. This would help 
one to understand more easily the conditions under which DL may have a specific 
dependence on V, or Pe. In particular, we may understand the condition(s) under 
which DL may no longer depend quadratically on V,. In general, the essence of 
dispersion processes is the existence of a velocity distribution and the competition 
between this distribution and molecular diffusion. If a fluid particle is travelling with 
the speed VI along a streamline which is very close to the solid surface of a pore, it 
may be transferred (by molecular diffusion) to another streamline with speed V2 (where 
V2> VI), because it takes less time to diffuse to that streamline than to be convected 
a certain distance. If rD is the radial distance between the two streamlines, the diffusion 
timescale is t ,  = r2,/2D. Alternatively, we may imagine that, instead of diffusing to 
the streamline with speed V2 in a time tD, the particle waits for the time tD after which 
it instantaneously jumps to the streamline of speed V2.  Therefore, dispersion processes 
may be formulated in terms of the random walk of a dynamically neutral fluid particle 
which is being convected along streamlines with speeds V,, V,, . . . , and is making 
instantaneous jumps between the streamlines, with t ,  being the time between successive 
transitions. We assume that t D  is a distributed quantity with a PDF 4 (  t ) .  This random- 
ness may be due to the fact that each time the particle makes a transition between two 
streamlines, the distance between the two streamlines may be random and different 
from that of the previous transition. Such random walks in which the walker waits 
for a time t (where t is a distributed quantity), before it makes an instantaneous 
transition to another point, are called continuous-time random walks (CTRW) (Scher 
and Lax 1973) and were first developed for modelling of transport processes in 
disordered solids. Thus, in what follows we present a CTRW formulation of dispersion 
processes. Our result is not restricted to dispersion in a capillary tube and is valid for 
any system which follows the physics of the process considered here. Indeed, we shall 
show in § 4 that this analysis is equally applicable to dispersion in flow through certain 
random networks of interconnected tubes. Moreover, this CTRW formulation enables 
us to investigate the conditions under which equation (11) may be violated. As we 
show below, our formulation can also reproduce the dependence of D J D  on Pe that 
was derived by Saffman (1959). However, our CTRW formulation is in principle exact, 
provided that the waiting time distribution can be specified, whereas Saffman’s formula- 
tion involves several approximations. 

For simplicity, we consider only two streamlines with speeds V ,  and V,; the 
generalisation of the technique to many streamlines is also possible, but it is much 
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more complex and will be briefly discussed below. Suppose that T,, is the time at 
which the nth jump of the particle from one streamline to the other takes place and 
that its position at that time is x,. Obviously 

(15) 

and, therefore, if n is even (since we are considering the limit of very large n, this 
assumption is of no significance and is only for convenience), we have 

x, = ( t l  - t o )  Vl + ( r2-  t l )  V2+ ( t3 - r 2 )  VI . . . 

n n 

x, = VI t i “ ’ +  v, t i p ’  
i = l  i = l  

where and r i p ’  are two independent and identically distributed random variables 
with a common PDF 4 ( t ) .  (Note that the waiting time before each transition is 
rl - to, t2 - t l  and so on.) If we let 

and 

i = l  

then we can calculate all of the statistics of interest from equations (15)-(17). In 
particular, the average velocity is given by 

va = ( VITf’+ V2T!,@’) 
Tr’+ TI$’ 

while the dispersion coefficient is given by 

&=((x,  - v,T,)2/2T,) 
where (. . .) denotes an averaging over the distcbutions of Tf’ and Tip’. Thus, we 
need to find the PDF +( t )  for Ty’  and TLp’. If d(A) is the Laplace transform of d( t )  
(where A is the Laplace transform variable conjugate to t ) ,  then $ ( A ) ,  the Laplace 
transform of $ ( t ) ,  is given by (Feller 1971) 

(21) 
We assume that $ ( t )  is not long-tailed (i.e. the first two moments (r) and ( t 2 )  are finite) 
so that ; (A)  can be written as 

$0 1 = [&A 11“. 

$ ( A )  = 1 - ( ? ) A  +(t2)A2/2+higher-order terms 

$ ( ~ ) = ( i - ( t ) ~ +  ...)“. (23) 

(22) 
where ( t )  is the mean waiting time (the mean time between jumps). If one combines 
(20) and (21), one obtains 

Note that both T?’ and TIp’ have a common PDF +(r). Equation (19) can now be 
written as 

which, subject to (23), yields 
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which is expected. However, we should note that we have only required that the first 
two moments of 4 ( t )  be finite (in fact, we only need to have a finite ( t )  in order to 
have a finite V, ) and we have not specified any particular form for 4(  1 ) .  It is easy to 
show that equation (25) is valid for any 4 ( t )  for which the mean waiting time ( t )  is 
finite. If we have n streamlines with speeds V,, V,, . . . , it would be easy to show that 
a generalisation of equation (24) would yield, V, = ( l / n )  E:=, V, .  

In a similar fashion, the dispersion coefficient DL can be written as 

which, in the limit n + 03 and after many tedious manipulations, yields 

DL = U2a2/8(  t )  (27) 

where a' = ( t ' )  - ( t ) 2 ,  Here U = (V,  - V,)/2, so that U is some kind of characteristic 
velocity. In equation (27), in addition to the right-hand side, several other terms also 
arise. But such terms are very small in the limit n + CO and do not contribute significantly, 
as long as ( t )  and ( t ' )  are finite. Since ( t) /u2 is a measure of the diffusion coefficient 
that characterises the diffusive transition from one streamline to the other (Scher and 
Lax 1973), i.e. ( t ) / ( + *  - 0, equation (27)  is essentially equivalent to the Taylor-Aris 
result. In our derivation, we have ignored diffusion of the fluid particle along the 
streamlines. If we do not ignore this diffusion, a term which is similar to a diffusion 
coefficient would be added to the right-hand side of (27), so that equation ( 1  1) would 
be exactly reproduced. 

The derivation of equation (27) ,  based on a CTRW formulation of the problem, 
enables us to investigate the conditions under which it (or, equivalently, equation (1 1)) 
may break down. For example, if ( t )  is finite but ( t ' )  is infinite, a situation that may 
be realised if 

j ( A ) = l - c l ( t ) A + c z A " Y + . .  . (28) 

where y, c, and c2 are constant and 0 < y G 1,  we find that DL diverges unless a large-time 
cutoff is introduced into the problem to make the integral in equation (26) finite. A 
careful analysis of this situation shows that, e.g. for y = 1,  we obtain 

D L - U l n  U (29) 

which is a strong departure from the Taylor-Aris dispersion theory, but it is similar 
to Saffman's result mentioned above. Moreover, one may view the exponent y as a 
tunable parameter by which one can change the dependence of DL on U (i.e. DL 
depends on U according to a power law in which the exponent depends on y ) .  Since 
waiting time distributions for which ( t 2 )  is infinite are characteristics of processes which 
are very slow, equation (28) may mean that, if the mixing process takes place in a 
medium which contains very slowly moving or stagnant regions, the dependence of 
D ,  on the flow velocity may vary anywhere from equation (29) to (27). Note that, 
according to equation (21), the transit time distribution (i.e. the distribution of T') 
can be different from (4)  (i.e. the mixing process cannot be described by the CDE)  and 
may depend on the form of 4 ( t ) ,  but equation (27) would still be valid. This means 
that a quadratic dependence of DL on V, is not restricted to Taylor-Aris dispersion, 
which is described by a CDE, and may also arise in other systems (see below). 

Another possible approach for determining the dependence of DL on the flow 
velocity is to allow, in our CTRW formulation, the streamline speeds V, ,  V,, . . . , to be 
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independent and identically distributed quantities with a common PDF F (  V). Assuming 
that these speeds are distributed quantities is realistic, as the flow field in a real porous 
medium is chaotic and essentially random and, therefore, the streamline speeds may 
be expected to be random variables. The PDF F (  V) can, in principle, be computed if 
the morphology of the porous medium and the flow regime (laminar, turbulent, etc) 
are known. The computation of F ( V )  is complex and is beyond the scope of the 
present paper and will be discussed elsewhere, but it suffices to mention that the 
dependence of DL on the flow velocity depends crucially on the behaviour of F (  V) 
near V = O .  If 

is finite, one finds that DL depends linearly on the flow velocity. On the other hand, 
if F-, is divergent, i.e. there are many extremely slow streamlines or there are stagnant 
regions of the pore space where the velocity field vanishes (e.g. if F (  V) - VY, where 
0 < y G l ) ,  one finds that DL depends non-linearly on the flow velocity, DL - V2f(ln V, )’, 
where a and p are constants that depend on the flow regime and the strength of 
molecular diffusion, and 0 < cy s 2 and 0 S p S 1. 

We now consider dispersion processes in a system with a microstructure which is 
more complex than a capillary tube, but simpler than a real porous medium. Because 
dispersion processes in this system are amenable to exact calculations, their study can 
help us understand the conditions under which the CDE may not describe dispersion 
processes. We consider a one-dimensional system of length L ( L  is large) which is 
made of many sections of length L, (see figure 1). Within each section there are n 
randomly located streamtubes or ducts, where n is a randomly distributed quantity 
with a PDF N ( n ) .  The width of the medium is assumed to be finite which, for 
convenience and without lack of generality, is taken to be unity. Creeping (Stokes) 
flow is assumed within each streamtube and it is also assumed that fluid particles in 
each tube (duct) move with the mean velocity of the streamtube. Thus, the fluid 
velocity V is proportional to w 2  (I?*), where w ( R )  is the width (radius) of the duct 

1-1 - - - - -1 
I I I 

1 
1-1 - - - - - - - - +- - -- - - -- 4 -- - - J 
I 

1 I 
x z  0 x = L  

-------- ---- 
Figure 1. One-dimensional idealisation of a porous medium for studying variations in 
transit times of tracer panicles. 
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(streamtube). There is very little interchange between the tubes. As such, the model 
is somewhat similar to a stratified porous medium, where the permeability of each 
stratum is a random variable and there is no appreciable exchange between two 
neighbouring strata. We now inject into the medium a population of dynamically 
neutral fluid particles, miscible with the flowing fluid inside the medium, and ask the 
following question: is this mixing process diffusive, i.e. can it be described by a CDE? 

To answer this question, we calculate the transit time distribution Q(L,  t )  of the 
injected fluid particles and compare it with equation (4),  which is the prediction of 
the CDE. Since the medium has been partitioned into m = n - 1 ducts in (0, l ) ,  we 
require the PDF for the width of the duct (the radius of a streamtube), if a given point 
lies in that duct (streamtube). Because of the partitioning of the unit interval, we have 
m independent random variables xi with i = 1 , 2 , .  . . , m, which have a common 
PDF H ( x )  which is concentrated on the unit interval ( 0 , l ) .  We then define an order 
statistics (Feller 1971) such that 

O < X ( , , < X ( , j <  . . .  X ( , , < l .  (31) 
The ith interval is defined by [ x ( ~ , ,  x ( ~ + ~ ) ] .  The PDF H(k) for x(kj is given by 

Equation (32) is a generalisation of a result given by Feller (1971). His result was 
derived for an exponential or uniform H ( x ) ,  whereas (32) is valid for any H ( x ) .  In 
the simplest case in which we have a uniform distribution for xl, x 2 , ,  . . , the widths w 
of the ducts (or the radii of the tubes) induced by the partition have a common 
distribution 

Y ( w >  WO) = (1  - W ) n - l  (33) 
and thus their PDF is given by y (  w )  = - (d /aw)  Y (  w > w,,) = ( n  - 1 ) (  1 - w ) " - ~ .  If n is a 
random variable which is distributed according to a PDF N ( n ) ,  the joint PDF for w 
and n is given by Z ( w ,  n )  = y ( w ) N ( n ) .  

We can now calculate the distribution of transit times Q(T, ) .  With L, being the 
length of a section (we have assumed that L, is constant, but we can easily generalise 
the derivation of the results to the case where L, is a distributed quantity), the transit 
time is given by t = L,/ V (  w ) .  For the ith section one has Qi(t) d t  = Z (  w, n) dw, and 
if we assume that V, = aw2, where a is a constant, we obtain 

--1/2 [ (LJ - I / ' ]  n - 2  
Qi( t )  5 ($) ( n - 1 ) N ( n )  1 -  2 

2 t 2  (34) 

The total transit time T, is given by T, =Z.i=, t ,  where j =  L / L ,  and t ,  = L,/ V a ( w , ) .  
Then, if & A )  is the Laplace transform of Q( T, ) ,  we have 

d ( A ) = [ 6 ( A ) l J .  (35) 
Although the form of Q( T,) ,  in the limit j + a, depends on the distribution N (  n), it 
is straightforward to show that, for a wide class of N ( n ) ,  the distribution Q( T,) would 
not converge to (4), so that the mixing process is not diffusive. 

In the system we just studied, we assumed that there is only convective mixing 
within each tube (duct) and there is very little exchange between the neighbouring 
tubes. More generally, we may consider a problem in which a CDE describes dispersion 
within each tube (duct) and there is a finite exchange of mass between the neighbouring 
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tubes. The radius (width) of the tubes (ducts) can be a distributed quantity. This 
problem was studied by Matheron and de Marsily (1980). These authors used an 
approximate method and asymptotic analysis to show that, as long as the total width 
of the system is infinite, at long times the mixing process is almost never governed by 
a macroscopic CDE and the dispersion coefficients will be time-dependent quantities. 
From these examples, we may conclude that the morphological properties of a medium 
strongly affect the transport and mixing processes, and the validity of a CDE for 
describing the process depends on the microstructure of the medium and the interaction 
between microscopic events (i.e. convection, diffusion, etc) that govern the transport 
and mixing processes. 

3. Monte Carlo simulation method for dispersion in porous media 

In the previous section, we studied dispersion processes in flows through systems 
whose microstructures were simple enough to afford an analytical solution for the 
problem. Our primary strategy was to calculate the distribution of transit times in 
order to test the validity of the CDE for describing dispersion processes. We now turn 
our attention to dispersion in flow through a porous medium and study the effect of 
morphological properties of the medium on dispersion processes. 

Dispersion processes in a porous medium are usually different from those in flow 
through a capillary tube and similar simple systems. Most of dispersion in a porous 
medium can come from the meandering of the streamtubes through the complex 
structure of the medium. In the whole porous medium, one may expect that molecular 
diffusion reduces the concentration difference between streamtubes which, because of 
the geometrical structure of the medium, happen to occur near each other. But one 
must be aware that diffusional mixing which results from contact between streamtubes 
at pore junctions is different from that due purely to a deformation of the displacing 
fluid front with different velocities, i.e. convective mixing, which may exist without 
any molecular diffusion because variable pore diameters and tortuous paths of fluid 
particles create a purely mechanical mixing which is totally independent of molecular 
diffusion. 

Because of the chaotic nature of the flow passages and the streamlines they enforce, 
statistical models of dispersion are natural. However, the success of such statistical 
models depends strongly on the models of pore space that are employed. Any porous 
medium can, in principle, be rigorously mapped onto an equivalent network of bonds 
which are connected to each other at sites or nodes of the network. The bonds can 
have any shape but, for convenience, are assumed to be cylindrical tubes. The 
geometrical characteristics of the medium can be incorporated into the structure of 
the network by assigning random radii to the network bonds and/or sites. These are 
selected from a pore size distribution that can, in principle, be measured by porosimetry 
or automated serial sectioning of the porous medium. The details of such a mapping 
are given by Mohanty (1981) and Lin and Cohen (1982). Usually, the resulting network 
has a random topology, i.e. its local coordination number, which is the number of 
bonds connected to a site, is a random variable. However, recent studies (see Jerauld 
et a1 (1984) and references therein) show that, as long as the average coordination 
number of the topologically disordered network is equal to the coordination number 
of a regular network, transport and many other properties of the two networks are, 
for all practical purposes, identical. Therefore, we employ a regular structure in the 
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form of a square network or a simple cubic network in this study. Since we are 
interested in the effect of connectivity of the pore space on dispersion processes, the 
concepts of percolation theory (Stauffer 1985) are also relevant. The applicability of 
percolation theory to modelling of flow and mixing processes in porous media is well 
established (Larson et a1 1977, Chandler et a1 1982, Heiba et a1 1982, Sahimi et a1 
1983, Thompson et a1 1987; see also below). 

We assume that only a fraction X of bonds is open to flow where X ,  s X s 1, 
where X ,  is the percolation threshold. The open bonds are either selected completely 
at random (as in a simple percolation process) or, as we shall discuss in 5 5 of this 
paper (where we discuss dispersion in flow of two immiscible fluids), are selected 
according to a special criterion. We either assign the same effective radius R to all 
open bonds, or select their R from a P D F ~ ( R )  which, in the present paper, is taken 
to be f( R )  = 2R exp( -R2).  The shape of this particular f( R )  mimics qualitatively the 
measured pore size distributions of many porous media (see, e.g., Chatzis and Dullien 
1985). Creeping flow in each open bond is assumed, so that the hydraulic conductance 
g of each bond is proportional to the fourth power of its effective radius (as in 
Hagen-Poiseuille flow). Thus the volumetric flow rate qi of the bond i is given by 

41 = gi APi (36) 

where Ap, is the pressure difference between the nodes of the bond. We then calculate 
the steady-state pressure distribution in the entire network. This is done by solving a 
standard Kirchhoff law formulation in which the flow rate q1 in each bond is as in 
(36). The Kirchhoff law formulation of the problem yields a set of linear equations 
in nodal pressures, which we solve it by a modified Gauss elimination method. The 
boundary conditions are unit pressure gradient which is either applied at 45" to the 
two (or three) bond directions, or is applied in the x direction, so that bonds in the 
y and z directions are perpendicular to the macroscopic pressure gradient. Cyclic 
(periodic) conditions on the opposed faces in the y and z directions are also assumed. 
From the pressure distribution and the effective radii of the bonds we can calculate 
the velocity distribution and the flow rate in each bond. 

To study dispersion in flow through the random network one can use one of several 
available approaches. In one of them one assumes that the distribution of the concentra- 
tion of the fluid particles in every tube is described by a one-dimensional CDE, in 
which DL is replaced by the molecular diffusivity D. One also assumes that there is 
perfect mixing at the nodes of the network, so that each bond can 'see' the rest of the 
network only through the tracer concentration at its two nodes. Thus, one needs only 
to solve for the concentration of the tracer particles at the nodes of the network. This 
yields, in the Laplace transform space, a set of linear equations for the (Laplace- 
transformed) nodal concentrations, from which the quantities of interest can be com- 
puted. Various versions of this method have been employed recently (de Arcangelis 
et a1 1986, Koplik et a1 1988, Roux et a1 1986), with essentially equivalent results. The 
efficiency of these methods depends crucially on the structure of the model of pore 
space that is used. For example, the method of de Arcangelis et a1 (1986) becomes 
highly inefficient and time consuming if it is applied to dispersion in percolating 
systems which is of interest here. 

In the present paper we use a MC simulation method which is an extension and 
modification of a MC method that we developed earlier (Sahimi et a1 1983, 1986a, b) 
for the purely convective limit. We inject into the network a population of dynamically 
neutral fluid particles, at the plane x = 0, and monitor their motion. This corresponds 
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to the injection of an initially sharp concentration front. Intuitively, one may expect 
that the tracers should be distributed over the inlet place, with a probability which is 
proportional to the fluxes of the bonds that cross the inlet plane. However, we select 
the injection points at random, because this leads to somewhat overweighting of 
low-flux branches of the network which help the tracers to sample slow fluid paths 
more efficiently. Such paths play a dominant role, as discussed below. The random 
selection of the initial point is also convenient from a computational point of view. 
However, this choice does not affect the essential features of the results. The path 
along which a particle travels depends not only on the morphology of thc network, 
but also on the microscopic events within bonds and nodes of the network. In the 
present paper dispersion processes in two distinct cases are studied: in the first case, 
velocity distribution within each bond is neglected. Thus the tracer particles are 
assumed to move as in the plug flow. In the second case the velocity distribution 
within each bond is not neglected and the tracer particles are allowed to diffuse from 
one streamline to another according to the criterion described below. 

We assume that, if the velocity distribution within a bond is neglected, converging 
streams are completely mixed at the nodes and a particle leaves a node into one of 
the attached bonds that carry flow away from that node (i.e. longitudinal diffusion 
against local flow is not allowed). If the Piclet number is very small, diffusion against 
local flow may become important, but this possibility is ignored here. The probability 
of selecting a tube is assumed to be proportional to its flow rate (this law of transition 
probabilities can in fact be derived from the CDE; see de Arcangelis er a1 (1986)). 
Within each tube, the particles move with the mean flow velocity V, of the tube. If 
the network is well connected (i.e. X = l ) ,  this model is perhaps not totally satisfactory, 
because the regions of slowly moving fluid near the pore walls are not sampled very 
efficiently. However, since all bonds have the same radius and we mostly use networks 
in which the macroscopic pressure gradient is imposed at 45" to the two (or three) 
pore directions (so that there is essential!y no difference between various bonds and 
there are very few, if any, tubes that carry very little flow), and because this model is 
primarily used for studying dispersion processes near the percolation threshold X,, it 
is expected that the results would contain the essential physics of the process, because 
near X ,  the dominant transport mechanisms are convection and diffusion over length 
scales that are of the order of the percolation correlation length 5,. The correlation 
length 6, diverges as X ,  is approached: 

(37) 

where v = for two-dimensional systems, while v = 0.88 for three-dimensional ones. 
The physical significance of 5, is that it is only for length scales L >> tP, that the system 
is macroscopically homogeneous and the description of transport processes by con- 
tinuum equations of diffusion or the CDE is valid. Thus 6, is the dominant (and the 
only) length scale in the system and, since ep is very large near X , ,  microscopic events 
that take place over length scales smaller than 5, do not contribute significantly. We 
point out that an approach similar to that we just described has recently been used to 
study deep bed filtration and the reduction of the permeability of a porous medium 
as a result of pore plugging by large particles (Imdakm and Sahimi 1987). The result 
was found to be consistent with the experimental data. 

When the velocity distribution within a tube is not neglected, we assume equation 
(7) holds within each tube. Thus, after selecting at random an injection point on the 
inlet plane at x=O, we also select at random a streamline along which the particle 

5 p  - ( X  - XC 1 - " 
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may be convected with the speed V given by equation (7). However, if the effective 
radii of the tubes are distributed according to a P D F ~ ( R ) ,  the network may contain 
tubes of very slow moving fluid. Then, as discussed by de Josselin de Jong (1958) and 
Saffman (1959), one finds that the mean convective time ( tc )  in a tube, where t ,  = b /  V, 
remains finite, but (tf) is divergent. In this case, molecular diffusion intervenes and 
transfers the fluid particle from a slow streamline near the tube wall to another 
streamline which is closer to the centre of the tube. The fluid particle is then convected 
along this new streamline. This is essentially the mechanism that gives rise to the 
D J D -  Pe lnPe relation. To take this effect into account in our MC simulations, we 
adopted a method which is similar to that of de Josselin de Jong (1958) and Saffman 
(1959). For a tracer particle on any streamline, the convection time t ,  is computed. 
If t ,  < t D ,  where t D  is a diffusion timescale, the particle continues its motion along the 
streamline and exits the tube and the travel time t is equal to t,. Here, t,, = r&/2D, 
where rD is the radial distance between the particle’s streamline and another streamline 
along which V =  V,. However, if t ,>  t D ,  we allow the tracer particle to diffuse to the 
streamline with speed V, and continue its motion along this streamline. In this case 
the total travel time t in the tube is given by t = t ,+ tD. 

Once the fluid particle arrives at a node, the selection of the next tube becomes 
important. If, as in the case of the network of equal size tubes which was discussed 
above, the particle selects the next tube with a probability proportional to the flow 
rate in that tube, the tubes which contain very slowly moving fluid (i.e. those with very 
small q )  would not be sampled sufficiently and dispersion coefficients are underesti- 
mated. Thus a prescription must be given for tube-to-tube transfer. If the tracer 
particles move close to the walls of the tube with incoming flow (see figure 2), then 
they are more likely to move into the tubes that are adjacent to these walls (the vertical 
tubes in figure 2). This suggests the introduction of a geometric and deterministic 
transition of the tracers from one tube to another. First, we assign boundaries for 
splitting the flow into independent bundles which are separated by hypothetical 
boundaries. To determine the position of these boundaries, we equate the total flow 
rate in the vertical tubes to the flow rate that can fill a sector of the horizontal tube, 
the distance of which from the centre of the cross section of the tube is ( R  - d , )  or 
( R  - d 2 ) ,  where R is the tube radius. Then, in transition from one tube to another, a 
tracer particle simply follows its own streamline. This intuitive method has been 
rigorously confirmed by the calculation of Jerauld (1985) who used a finite-element 

Figure 2. The splitting of the flow rate in a channel into neighbouring channels. 
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method to compute the distribution and the paths of streamlines in a network of 
capillary tubes. 

Near the percolation threshold X, ,  a large fraction of the bonds in the sample- 
spanning cluster of open bonds do not carry any fluid and the velocity field vanishes 
in these tubes. These bonds are the analogue of the dead-end pores in a real porous 
medium. The rest of the sample-spanning cluster which carries fluid is called the 
backbone of the cluster. As X ,  is approached, the fraction X B  of the bonds in the 
backbone vanishes according to the following power law: 

X B - ( X - X , ) P B  (38) 

where (Sahimi 1984b) pB = E  and pB = 0.95 for two- and three-dimensional networks, 
respectively. The total fraction XA of bonds that are in the sample-spanning cluster 
vanishes as 

XA- ( X  -Xc)P (39) 

where p = & and p = 0.43 for two- and three-dimensional networks, respectively. A 
tracer particle which is travelling with the flow field in a percolation network near X ,  
can communicate with the dead-end bonds only by molecular diffusion. Since near 
X ,  a large fraction of tubes are dead-end, they can have an important effect on the 
dispersion process, because mixing in such tubes can take place only by molecular 
diffusion. To account for this effect, we allow the tracer particles to diffuse into the 
dead-end bonds with a probability proportional to the molecular diffusivity. Alterna- 
tively (and, pcrhaps, more accurately), we may allow the tracer particle to diffuse into 
the dead-end bonds with a probability proportional to the inverse of the local PCclet 
number (i.e. based on the local velocities). This rule would allow us to account for 
the competition between the local flow field and molecular diffusion more realistically, 
but we found that the results do not change appreciably. The travel time in a dead-end 
tube is given by t D  = b 2 / 2  D. If a tracer particle arrives at a node to which only dead-end 
tubes are connected, it selects one of the tubes at random and continues its motion 
by molecular diffusion. Diffusion of the tracer particle in a dead-end branch of the 
network is continued until it joins the backbone of the cluster again and continues its 
journey with the flow field. Since near X ,  the dead-end branches can be very long, 
diffusion of the tracer particles in such branches can take a long time, if the molecular 
diffusivity is small. This makes the distribution of transit times very broad. As a result, 
we expect dispersion coefficients to increase as X ,  is approached (see below). 

A tracer particle, which is injected into the network at the position x = 0, would 
be at the location V,t if there were no dispersion. With dispersion, the actual location 
of the particle is not at Vat. Thus, in anlogy with equation (20), we can compute a 
longitudinal dispersion coefficient DL by 

(40) 

where L is the length of the network and t is the time at which the particle crosses 
the network at x = Lfor  the jrs t  time. Here ( . . . ) indicates an average over the transit 
time distribution of a population of tracer particles. The mean flow velocity V, is 
given by V, = L / ( t ) .  In a similar way, we can calculate the transverse dispersion 
coefficient DT: 

D, = (( L - Va t ) ' /  2 t )  

DT= ( L : / 2 t )  (41) 
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where L, is a (fixed) vertical distance from the starting location at t = 0 and t is the 
time at which the tracer reaches L,for  thefirst time (note that, for unidirectional flow, 
V, = 0 for the transverse directions). Calculating dispersion coefficients by temporal 
averaging is consistent with the experimental determination of dispersion coefficients 
by monitoring at some downstream position the concentration in an emerging con- 
centration front versus time since it was injected. To test the validity of the CDE, we 
also calculate DL and DT by using equation (6). If the CDE can describe the dispersion 
processes studied here, the two estimates of dispersion coefficients must be equal. 

For each realisation of the network we injected up to 10 000 tracer particles into 
the network and calculated the averages of the quantities of interest. We then made 
several independent realisations of the network and computed the average quantities, 
where the averaging was done over the population of the independent realisations of 
the network. The number of independent realisations was dependent upon the network 
size. For the square network and for network lengths up to L = 40, we used 40 different 
realisations of the network, whereas for 40 < L s 100, we used 30 independent realisa- 
tions. Up to 100 different realisations were used for the simple cubic network for 
which we used network lengths up to L = 20. 

4. Results of Monte Carlo simulations 

In this section we present the results of MC simulations of dispersion processes in 
square and simple cubic networks. We have carried out MC simulations of dispersion 
processes both in the backbone of the network alone (i.e. diffusion into the dead-end 
pores was ignored) and in the entire sample-spanning cluster (i.e. diffusion into the 
dead-end bonds was included). This would help us to understand the role of dead-end 
pores and their effect on dispersion processes. In both cases we have simulated 
dispersion in networks in which the effective radii of the bonds are distributed according 
to the P D F ~ ( R ) ,  or they all have the same size. We also consider the PCclet number 
dependence of dispersion coefficients over a wide range of the values of Pe. In what 
follows we first discuss dispersion processes in random networks in the limit of Pe + 0 
and in fully connected networks for various values of Pe. We then discuss dispersion 
on the backbone of the networks. We shall then discuss our results for dispersion 
processes in flow through the entire sample-spanning cluster and investigate the 
behaviour of dispersion coefficients near the percolation threshold. 

4.1. Dispersion in random networks in the limit Pe+O 

Let us first consider the limit of vanishing flow such that Pe + 0. In the absence of 
convection dispersion is only due to molecular diffusion, and both dispersion 
coefficients DL and DT are equal to the macroscopic molecular diffusivity D, of a 
tracer particle which is diffusing in the network. According to the well known Einstein 
relation, D, is proportional to the effective conductivity K of the network. Near X , ,  K 
obeys the following scaling law: 

K - ( X  -XC) ’  

where p -- 1.3 for two-dimensional networks (see, e.g., Zabolitzky 1984) while p ==2 
for three-dimensional networks (see, e.g., Pandey and Stauffer 1983). Since molecular 
diffusion takes place on the sample-spanning cluster of the network, then we have 
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D, - K / XA, which means that 

D, - ( X  - X , )  p - p  

D, - ti* (44) 

(43) 

which, in view of equation (37), can be written as 

where 8 = ( p  - p ) /  v. If we assume that diffusion takes place only on the backbone of 
the network, then clearly 

D, - (45) 

where 8 B  = ( p  - PB)/ U. In a finite network, tp cannot exceed L, the total length of the 
network. Thus, as Gefen er a1 (1983) have shown, for any length scale 5 < tp, one 
should replace 5, with 5 in equations (44) and (45). Thus, for example, 

D,- 5 - 0  (46) 

for diffusion on the sample-spanning cluster. The physical interpretation of (46) is 
that, for length scales 5 < t,, the macroscopic molecular diffusivity of the network and, 
thus, the dispersion coefficients in the limit Pe + 0, are length-dependent quantities 
and are not constant. We call this anomalous dispersion. Dispersion in this regime 
cannot be described by a CDE. If (> tp, then dispersion is described by a CDE in the 
limit V, = 0, i.e. a standard diffusion equation. The significance of equation (46) for 
the interpretation of experimental data is that it indicates that one can use a CDE only 
if the length of the system is larger than some characteristic length (e.g. tp in the 
present case). Because of the well known relation, dg'ldt - diffusivity, and in view 
of (46) one obtains 

(47) 

where d ,  is the fractal dimension of diffusing particles. For normal diffusion, d ,  = 2 ,  
while for length-dependent diffusion (equation (46)) d ,=  2 +  8. (For diffusion on the 
backbone, d, = 2 +  OB.) Because 8 > 0, the growth of l2 with time is slower than linear. 
If equation (46) holds, one can no longer use a CDE to describe the mixing process 
and, therefore, equation (3) (in the limit V, = 0) can no longer be used. For this case, 
Guyer (1985) has proposed that 

(48) 

Here v p = d w / ( d w - l ) ,  A is a constant which is obtained from the normalisation of 
P ( ( ,  t ) ,  and 5 is the distance from the origin. The quantity d, = 2 d f / d ,  is the usual 
spectral dimensionlity, where d f  is the fractal dimension of the infinite percolation 
cluster and d f = % z  1.896 for two-dimensional netwo;ks, while d f =  2.5 for three- 
dimensional ones. Clearly, if equation (48) holds, the FFTD for this mixing process is 
nor given by equation (4) but, in the limit of long times, it can be computed (numerically) 
from (48), since (Sahimi et a1 1986b) 

5 2  - t2/du 

P (  6, r )  - exp[ - (I& t ' l d w )  "PI. 

Q(5, t )  = 2-'[@(t, A)/@(() ,  A ) ]  (49) 

where P(&, A )  is the Laplace transform of P(5,  t )  and 2-' denotes the inverse Laplace 
transform. We shall return to equation (48) to propose a generalisation of it which 
would be valid for V, # 0. Note that, in this case, the only timescale in the problem 
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is L2/D,  and, therefore, ( t " ) -  (L2/D,)" .  Thus, for the anomalous dispersion regime 
one has 

( t " )  - ~ " ( 2 + e )  - ( t )" .  (50) 

For dispersion on the backbone, p is replaced by pB. 

4.2. Dispersion in fully connected networks 

We first consider dispersion processes in fully connected networks in which all bonds 
are open to flow and have the same effective radius. Consider a square or simple cubic 
network in which the bonds are either parallel or perpendicular to the mean flow 
direction. If the velocity distribution within each bond and molecular diffusion are 
totally neglected (i.e. the limit Pe+co) ,  then there would be no dispersion since the 
convection time is the same for all tracer particles and the FPTD is of the form S (  t - f , ) ,  
where t ,  = L/ V,. However, if the velocity distribution within each bond is not neglected, 
then there will be some dispersion due to convective mixing even in the absence of 
molecular diffusion. In this case the longitudinal dispersion coefficient is given by 
equation (10) in which b must be replaced by L, the total length of the network. 
Therefore, as discussed above, dispersion cannot be described by a CDE and DL depends 
linearly on L and V,. Because molecular diffusion has been totally neglected, there 
can be no transverse mixing and thus DT= 0. 

However, if molecular diffusion is not neglected, then the situation can drastically 
change. First, consider the case in which molecular diffusion between streamlines is 
not negligible, but we neglect molecular diffusion into the bonds that are perpendicular 
to the mean flow direction and carry no flow, because all bonds have the same effective 
radius. Such bonds are similar to dead-end bonds. Thus, the system is reduced to a 
bundle of parallel capillary tubes, in each of which Taylor-Aris dispersion is operative. 
If the network is long enough then, since there is no interaction between the parallel 
tubes, equation (1 1) is applicable to each long tube (made of L/ b elementary tubes). 
Thus DL/D depends quadratically on Pe. The transverse dispersion coefficient DT is 
still zero, because there is no interaction between the parallel tubes. 

Next, we assume that diffusion into the vertical bonds cannot be neglected, but 
there is only convective dispersion in the horizontal bonds. Thus, dispersion is caused 
by convection in a bundle of parallel long capillary tubes, with molecular diffusion 
transferring the tracer particles from one long tube to another via the vertical bonds 
in which there is no flowing fluid. However, the precise dependence of DL on the 
PCclet number depends on the strength of the flow field and that of molecular diffusion 
in the vertical bonds. If the timescale tDE for diffusion is much smaller than the 
convective time t ,  to cross the network at x = L, we may neglect convection and 
dispersion coefficients will essentially be equal to the molecular diffusivity D,. For 
an L~ cubic network fDE is given by tDE = Mb2/2D, where M = ( d  - 1) L' + ( L - 1 )2 and 
t ,  = L/ V,. Thus, if one defines a macroscopic PCclet number by Pe = LV,/ D, the 
condition tDE<< t ,  leads to Pe<< 2 L 2 / ( M b z ) .  Therefore, for a finite network of a given 
size, we can determine the limiting Pe below which diffusion dominates the mixing 
process. On the other hand, for Pe >> 2 L 2 / ( M b 2 ) ,  convection and diffusion are both 
important and both DL/D and D T / D  are quadratically dependent on Pe. 

The intermediate regime in which there is molecular diffusion between the stream- 
lines in the horizontal bonds is even more interesting. Now, one has Taylor-Aris 
dispersion in long parallel tubes with molecular diffusion carrying the fluid particles 
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from one long tube to another (via the vertical bonds). This problem is similar to that 
studied by Aris (1959) who considered Taylor-Aris dispersion in long tubes to which 
are connected tubes of varying lengths and in which there is no flowing fluid. Thus, 
the side tubes communicate with the main tube only by molecular diffusion (similar 
to dead-end bonds), A r i s  (1959) derived an expression for the longitudinal dispersion 
coefficient which, for the present problem, simplifies to 

R’V;+ v 2 V ;  
3D(1+ u ) ~  

DL= D + f u ~  

where v is the volume of the vertical bonds per unit volume of the long tubes. Here 
fu is a numerical factor and is given by 

1 + 6 u +  llu’ 
”= 48(1+u)’ 

so that, for v = O ,  equation ( 5 1 )  reduces to ( 1 1 )  as it must. One immediate result of 
equation (51) is that diffusion into dead-end bonds increases dispersion coefficients. 
This is reasonable, because in this network dispersion is caused only by the fluid 
particles spending time in the slowly moving regions (since no structural disorder or 
a chaotic velocity field exists in this network). The second conclusion that one can 
draw from equation (51) is that, if there are dead-end bonds in the network and 
molecular diffusion is slow (but cannot be neglected), DL/U is proportional to Pe’. 
As we shall show below, for dispersion near the percolation threshold, where there is 
a large fraction of dead-end bonds, DL/ D is still proportional to Pe’. Thus, dispersion 
in the ordered networks considered here can help us understand dispersion in a 
disordered percolation network near X , ,  which is a totally different and far more 
complicated system. It is clear that in the present system DT/D is also proportional 
to Pe2. 

Consider now the case in which the network is very weakly disordered. For example, 
consider a network in which only a few vertical bonds have different effective radii, 
with the radii of the rest of the tubes being the same. If we consider the ith row (or 
plane) of the tubes that are in the direction of macroscopic flow (i.e. the x direction), 
the flow field in all of these tubes is essentially the same. We denote by V,, the mean 
velocity in these tubes. It is obvious that the mean velocity V, of the tubes in the j th  
row is not equal to V,, (although the difference may be small) because of the presence 
of those few vertical bonds, the effective radii of which are different from the rest. 
Therefore, the network is essentially made of a bundle of long tubes in which the mean 
speeds are Val, V a z , .  . . . These tubes interact with one another via the vertical tubes 
in which there is very little, if any, flowing fluid. A tracer particle that is injected into 
this network travels with the mean speed V,,, then diffuses into one of the vertical 
bonds until it reaches another tube with the mean speed V,, and continues its journey 
until it diffuses into another vertical tube, and so on. Thus, the problem is exactly 
similar to that analysed in § 2 by a CTRW formulation, where the diffusion times in the 
vertical tubes correspond to the waiting times. In a sense, each long horizontal tube 
serves as an effective streamline. Therefore, we expect DL/ D to depend quadratically 
on Pe and our computer simulations support this. If the network is totally disordered 
in the sense that the effective radii of the tubes are distributed according to a P D F ~ ( R ) ,  
then dispersion is dominated by the slowest tubes. This case is studied in 0 4.3 and 
will not be discussed here any further. 
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We now consider dispersion in fully connected networks in which the macroscopic 
pressure gradient is applied at 45" to the two (or three) pore directions. Dispersion 
in such networks is similar to that we investigated above, except that there are no 
pores that carry no flow. Thus, most of our discussion above is equally applicable to 
dispersion in such networks. In the next sub-section, we investigate dispersion in the 
backbone of the networks. All of our results that are presented in $ 0  4.3,4.4 and 5 are 
for dispersion in networks in which the macroscopic pressure gradient is applied at 
45" to the two (or three) pore directions. 

4.3. Dispersion in the backbone of random networks 

At the outset we can dispose of the question of how the longitudinal dispersion 
coefficient DL depends on the axial position in the porous medium. There have been 
many experimental measurements of DL in packed beds and in porous media (e.g. 
Harleman and Rumer 1963, Edwards and Richardson 1968, Salter and Mohanty 1982, 
Delshad et a1 1985). Implicit in these experimental studies is the assumption that DL 
is constant and depends only on Reynolds number and Piclet number and is indepen- 
dent of position in the porous medium. However, as we showed in $ 8  2 and 4 for 
dispersion in capillary tubes and in networks, DL can be strongly dependent on the 
length of the system (see equation (10)) and, in their work on convective diffusion in 
capillary tubes, Taylor (1953) and Aris (1956) pointed out carefully that their result 
would be valid if the length of the tube is long enough and only after a sufficiently 
long time has passed. More recently, Han et a1 (1985) measured DL (and DT)  at 
various axial positions in a packed bed and found that, unless the dispersion length 
satisfies a certain constraint, which was found to depend on Piclet number, DL would 
be strongly dependent on the axial position in the bed. 

We simulated dispersion in the square and simple cubic networks with distributed 
pore sizes. We then computed DL at various (longitudinal) positions in the network. 
All of the results in this paper are dimensionless (see Sahimi et a1 (1986b) for converting 
the dimensionless quantities to dimensional ones). Figure 3 presents our results for 
the square network. At short distances D, rises sharply, but the rate of increase falls 

/ I I I I I I I I 
3 0  20 40 60 80 

Distance in flow direction,x 

Figure 3. The variations of D, with position in the direction of macroscopic flow in the 
square network. (-) denotes D, based on the random walk model with the transition 
probabilities proportional to the local pore fluxes, (- - -) denotes D, in which the transition 
probabilities are equal in all directions, while (-.-) denotes D, in which diffusion 
between streamlines has been taken into account. 
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off rapidly and, consequently, for large distances DL increases with position very slowly 
if at all. This figure is in good qualitative agreement with the experimental results of 
Han et al (1985). This agreement is an indication of the validity of our MC approach. 
Moreover, the values of DL which were computed by using equations (6) and (40) 
were in total agreement with each other. This means that the dispersion process 
simulated here can be described by a macroscopic CDE. Similar results were found 
for dispersion in simple cubic networks. On the other hand, the transverse dispersion 
coefficient DT showed very little variation with position in the network, as demonstrated 
in figure 4, where we present the results for dispersion in the simple cubic network. 
This is also in qualitative agreement with the experimental results of Han et a1 (1985). 
To make the agreement quantitative, one needs to have detailed information about 
the morphology of the porous medium, which is not available to us. 

B I 

g j 1, 
k 

0 20 40 
Dlstance in f l ow   direction,^ 

Figure 4. The variations of DT with position in the direction of macroscopic flow in the 
cubic network. 

To demonstrate the significance of the slow pores that carry very little flow, we 
also simulated dispersion in networks in which the velocity distribution within each 
bond was neglected and the particles were moved with the mean velocity of each bond. 
Perfect nodal mixing was also assumed, as discussed above. We then simulated two 
distinct cases. In the first case, a tracer particle selects a bond with a probability 
proportional to the flow rate in that bond. In the second case, a tracer particle selects 
a bond at random (i.e. if there are z bonds that carry flow away from a node, the 
particle selects one of them with the probability l / z ) .  Thus, in these cases, molecular 
diffusion within a bond is totally absent and dispersion is only the result of convective 
mixing. The results are also shown in figure 3. As can be seen, DL attains its smallest 
value when perfect nodal mixing is assumed and a bond is selected with a probability 
proportional to its flow rate. However, DL increases when a bond is selected at random. 
Finally, DL attains its largest value when velocity distribution within bonds and 
diffusion between streamlines in the slowest bonds are not ignored. This is of course 
because of the fact that, in the third case, the bonds that carry very little flow (i.e. the 
bonds with the largest transit times) are sampled very efficiently and, therefore, DL 
attains its maximum value, whereas they are not sampled sufficiently in the first case 
and thus D, is minimum. 



3854 M Sahimi and A 0 Imdakm 

- - 
- - 
- - 
- - 
- - 
- - 

I I 1 1 I I l l 1  

Next, we determined the dependence of dispersion coefficients on the PCclet number 
Pe. To vary Pe, one can vary molecular diffusivity D or the mean flow velocity by 
changing the macroscopic pressure gradient that is imposed on the network in the x 
direction. Parabolic velocity profile within each tube (whose effective radius is selected 
from P D F ~ (  R ) )  and molecular diffusion between streamlines were assumed, as 
described above. The results for D L  and DT are presented in figures 5 and 6 ,  respectively. 
(The results shown are the average values over many realisations. However, the 
variations of the values DL and DT for different realisations were somewhat large.) If 
one assumes that DLID- PePL and DTID- PePT, then a fit of the curves to such 
power laws yields 

p L =  1.2*0.1 (53) 

P T =  0.95 * 0.05. (54) 

100 I I I I I l l l l  - - 
- 
- 
- 
- 
- 

- 
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Figure 6. The dependence of D T / D  on the Piclet number Pe. 
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These results are in good agreement with the available experimental data which are 
mostly in the ranges 1.15 6 p L s  1.25 and 0 . 9 s  P T s  1. They are also consistent with 
the more rigorous computations of Jerauld (1985). On the other hand, if we assume 
that DL/ D - Pe In Pe, the results of figure 5 can also be fitted to this equation with a 
high degree of accuracy. This is in agreement with the theoretical predictions of de 
Josselin de Jong (1958), Saffman (1959) and Koch and Brady (1985). These authors 
have predicted that, if there are regions of the pore space in which the fluid is moving 
very slowly (such as a boundary layer close to solid surfaces of the pores, or pores 
that are nearly perpendicular to the macroscopic pressure gradient), DL/ D will grow 
with Pe as 

(55) 

Equation (55) is often valid if 5 S Pe s 100. 
The dispersion process investigated above is caused by the random geometry (sizes 

of the pores) of the pore space and its interaction with molecular diffusion. We now 
examine the effect o f  varying the topology of the pore space. To this end, we investigate 
dispersion processes on the backbone of a percolation cluster. Thus, each bond is 
assumed to be open to flow with the probability X (i.e. the fraction of open bonds is 
X ) .  The open bonds either have the same effective radius or their radii are distributed 
according to P D F ~ ( R ) .  The computed values of DL for the simple cubic network are 
shown in figure 7. As the percolation threshold X ,  is approached, the longitudinal 
dispersion coefficient DL increases. However, DL appears to attain a maximum at a 
point close to X ,  and ultimately vanishes at X , ,  whereas for the square network DL 
appears to diverge without bounds (see figure 12 below). 

To understand the results of figures 7 and 12, we develop a scaling theory for DL 
near X , .  The volume fraction of the fluid flowing in the backbone is proportional to 

DL/ D - Pe In Pe. 

Fraction of open pores,x 

Figure 7. The variations of D, with the fraction of open pores in a simple cubic network. 
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X B .  Thus, because the mean velocity of fluid particles is proportional to K / X B ,  we 
obtain 

v, - ( X  - X , ) P + B  (56) 

which is similar to equation (43). Consider now the purely convective limit in which 
DL depends linearly on V, and, therefore, DL- L,V,, where L, is a characteristic 
length which is often called dispersivity. L, may depend on the structure of the porous 
medium, direction relative to mean flow and the flow field. Since in a percolating 
system the only relevant length scale, aside from the length of the bonds, is the 
correlation length tp, we must have DL - tP V,. If we combine this equation with 
equations (37) and (56), we obtain 

(57)  

In a finite network of length L, tp cannot exceed L. Thus, by an argument similar to 
that used for equation (46), we must have 

DLS L I - @ B  (58) 
which is valid for L<gp .  Equation (58) implies that one has anomalous length- 
dependent dispersion. (Compare equation (58) with DL- L-'B, which holds in the 
limit Pe + 0.) Therefore, if we substitute the estimates of PB, p and Y in equation (58), 
we find that DL - for two-dimensional networks, whereas DL - L-O.I9 for three- 
dimensional ones. Note that, according to our scaling theory, DL vanishes in three 
dimensions whereas it diverges in two-dimensional networks. This is presumably 
caused by the structure of the backbone. The backbone is made of tortuous flow paths 
involving links and blobs. Links are the bonds that connect the blobs and the remaining 
multiply connected bonds aggregate together in blobs. The blobs are very dense in 
two dimensions, providing a wide variety of paths for the fluid particles with a broad 
FFTD. Because of this, DL appears to diverge in two-dimensional networks. However, 
the blobs are not very dense in three-dimensional networks and the FPTD is not very 
broad. As a result, D, appears to vanish in three dimensions. Note also that an 
equation such as ( 5 7 )  or (58) cannot be predicted by a CDE and, therefore, an approach 
such as that of Koch and Brady (1985) cannot be used to predict the power-law 
dependence of dispersion coefficients on L or ( X  - X , )  at or near X , .  If we do not 
neglect molecular diffusion between streamlines in the slowest regions of the backbone 
(but neglect diffusion into the dead-end bonds) then, according to equation (55), 
equations (57) and (58) would be modified by a logarithmic term, which is usually 
ignored in scaling theories of transport processes, because it does not change the form 
of a power law, since the logarithmic vanishing or divergence of a quantity is slower 
than any power law. To check the validity of equation ( 5 8 ) ,  we simulated dispersion 
in the backbone of the square and simple cubic networks at X = X , .  The results for 
the square and cubic networks are presented, in log-log plots, in figures 8 and 9. The 
slopes of the straight line agree very well with the prediction of equation ( 5 8 ) ,  confirming 
its validity. We also simulated the same process at X = X , ,  but took into account 
diffusion, in the slowest tube, between the streamlines. Although our results showed 
large scatter, we found that for the square network DL- , somewhat larger than 
that predicted by equation (58). This is, of course, caused by the logarithmic corrections 
discussed above. 

The behaviour of the transverse dispersion coefficient DT in flow through the 
backbone of the simple cubic network is shown in figure 10. Similar to DL, the 

DL- t $ ( ! - - p ~ ) / u  
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Figure 8. The dependence of D, on the length L of the square network (for flow through 
the backbone) at X,. 

4.01 lJ I I I I 
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In L 
Figure 9. The dependence of D, on the length L of the simple cubic network (for flow 
through the backbone) at X,. 

transverse dispersion coefficient appears to vanish at X , .  Since, from a macroscopic 
point of view, transverse dispersion is similar to a purely diffusion process and it is 
not driven by a macroscopic flow field (since the mean flow velocity is zero in the 
transverse directions), it is not surprising that DT vanishes at X , ,  since the diffusivity 
of a percolating network vanishes at X , .  Moreover, one may argue that near X ,  the 
paths that the particles take are so tortuous that the particles cannot distinguish between 
longitudinal and transverse directions, so that an equation similar to (58) may also 
hold for DT, albeit with a different prefactor that is implied by the right-hand side of 
equation (58). 
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Figure 10. The variations of DT with the fraction of open pores in flow through the 
backbone of the simple cubic network. 

From equation ( 5 8 )  we can obtain the fractal dimension of the tracer particles for 
the anomalous dispersion regime. In equation ( 5 8 ) ,  similar to equation (46), the length 
L can also be the mean distance 5 from the origin of motion that the fluid particles 
have travelled at time t .  Therefore, we can rewrite equation ( 5 8 )  as d12/dt-5’-’” 
which, after integration, yields 5’ - t 2 ’ ( ’ + ’ B ) .  This means that the fractal dimension d ,  
is given by 

d , = l + e , .  (59 )  

Equation (59) should be compared with the corresponding fractal dimensions of the 
fluid particles in the limit Pe + 0. In these cases, for dispersion in the backbone we 
had d ,  = 2 + Be,  whereas for dispersion in the sample-spanning cluster we had d ,  = 2 + 8, 
as discussed above. Both of these are larger than the fractal dimension given by 
equation (59 ) ,  which means that the movement (and thus mixing) of the tracer particles, 
in the limit Pe + 0, is slower than linear. This is not totally surprising as the flow field 
(when Pe > 0) generates a net bias on the backbone of the cluster, which makes it 
easier for the fluid particles to get away from the origin of their motion. We also 
propose that for the present case P(& t )  is given by (see also Sahimi 1987) 

Here up= d , / ( d ,  - l),  vd = 2 d i 1 ,  d, = d B / d , ,  a’, a2 and a3 are constant and d ,  = 
d - p , / v  is the fractal dimension of the backbone and thus d B = $ = 1 . 6  in two 
dimensions and dB=1.91  in three dimensions. Equation (60 )  reduces to ( 3 )  for 
macroscopically diffusive dispersion (with d,  = 3 and v d  = vP = 2). We point out that, 
according to equation (59 ) ,  d , (d  = 2 )  = 1.57, which implies that 5’ - t1.3 , i.e. mixing 
of fluid particles in two-dimensional media is faster than is predicted by a CDE and a 
Gaussian distribution, whereas it is slower in three dimensions since d , (d  = 3 )  = 2.19 
and C’- Equation ( 3 )  predicts that 12- t in both two and three dimensions. To 
check the validity of (60 ) ,  we performed MC simulations in the square network and 
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computed P(& t ) .  The results are shown in figure 11, where we present the simulation 
results (for the x direction) together with the predictions of equation (60). The constants 
A ,  and a, were determined by using two data points from the simulation data. The 
agreement is very good, giving strong support to the validity of equation (60). Note 
that the form of equation (60) suggests that the governing equation of dispersion, of 
which equation (60) is presumably the solution, has a far more complicated form than 
a CDE. The work of Guyer (1985), who proposed equation (48), indicates that the 
governing equation of diffusion in the anomalous regime may involve integrals over 
both space and time, and we may anticipate the same phenomenon for anomalous 
dispersion. On the other hand, with the aid of equation ( 6 ) ,  it is easy to show that 
for the anomalous (length-dependent) dispersion, we have 

(61) 

which means that the scaling with L of ( t " )  ( n  > 1) cannot be obtained from that related 
to that of ( t ) ,  in contrast with the limit Pe+O (equation (50)). 

( t " )  - L'+"% 

4.4. Dispersion in the sample-spanning cluster of random networks 

We now discuss dispersion in flow through random networks in which diffusion into 
the dead-end bonds is also allowed. The presence of dead-end bonds introduces into 
the problem a new timescale tDE, which is the time that a fluid particle spends in a 
dead-end branch of the network. If molecular diffusion in a dead-end branch is 
relatively fast, the dead-end branches cannot have much effect and, therefore, dispersion 
follows essentially the same laws as those in the backbone which we discussed above. 
Therefore, we only discuss the case of slow molecular diffusion. As the percolation 
threshold is approached, many dead-end bonds and branches appear which, in case 

i 

B 
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Figure 11. The probability density P(S;  t )  for flow through the backbone of the square 
network. ( 0 )  The predictions of equation (60) ,  ( b )  the simulation data. 
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of slow molecular diffusion into such branches and bonds, cause an increase in 
dispersion coefficients, as discussed in 8 4.2. This is illustrated in figure 12, where we 
present the results of the longitudinal dispersion coefficient in the square network. As 
can be seen, near X ,  the values of D L  are larger than those for dispersion in the 
backbone of the network, and again DL appears to diverge as X ,  is approached. 
However, it is the largest dead-end branch that dominates the dispersion process and 
short dead-end branches cannot have a significant effect. This can also be inferred 
from the results of Aris (1959) discussed above. In his formulation of the problem, 
the length of the dead-end tubes is a distributed quantity. However, from his general 
formula for DL (equation (28) of his paper) it can be easily seen that the longest tube 
has a dominant role. Near X ,  diffusion in a dead-end branch is anomalous, because 
the length of this branch is smaller than tp (Ohtsuki and Keyes 1984). Therefore the 
diffusivity in this branch obeys equation (46) and the timescale tDE is given by 
tDE- L ~ /  D, - L2/ L-e  or 

t D ,  - L2+* (62) 

which must be valid for any L <  tP. For L >> t,, equation (62) becomes fDE - ,Fa - 
(;/ D,. de Gennes (1983) has suggested that DL diverges as X ,  is approached according 
to the following formula: 

DL- ( v , t p ) 2 / D p  (63) 

which is similar to Taylor-Aris dispersion in which the radius R and the microscopic 
diffusivity D have been replaced by the correlation length and the macroscopic 
diffusivity D,, respectively. We offer here a simple derivation of the result of de Gennes 
(1983). From the work of Aris (1959) we know that D L -  V z ,  and from dimensional 

Fraction of open p o r e s , ~  

Figure 12. The dependence of D, on the fraction of open pores of the square network. 
0, with dead ends; A, without dead-ends. 



Morphological disorder and hydrodynamic dispersion 3861 

analysis we are led to write DL- Vi7, where 7 is a characteristic timescale. Since, in 
the present case, the timescale fDE for diffusion into a dead-end branch is supposed 
to be the dominant timescale (because DL is dominated by the contributions from 
dead-end branches), one must have 7 - tDE and, therefore, DL - V:(ro - V:(;/ D,, 
which is identical with equation (63). Note that if diffusion into the dead-end bonds 
is included, then the mean flow velocity V, is proportional to K / X A  (and not K / X B ) ,  
which means that V, - [io. If we combine this with equations (46) and (63), we obtain 
DL - 

DL- L2-'. (64) 

Equation (64) implies again that for any L < 6, we have anomalous length-dependent 
dispersion which cannot be described by a CDE. Since 6 < 2  for two- and three- 
dimensional systems, equation (64) implies that DL diverges with L, whereas both 
equations (46) and (58) indicate that DL vanishes with L in three-dimensional systems. 
If we substitute the values of 6 in equation (64), we obtain DL- L'.' and DL- Lo.2 
for two- and three-dimensional networks, respectively. To test these predictions, we 
have carried out extensive MC simulations at the percolation threshold of the square 
and simple cubic networks. The results are presented in figures 13 and 14, respectively, 
and they are in good agreement with the theoretical predictions. 

Thus, for any length scale L < tP, we have 

3.5 4.0 
In L 

4.5 

Figure 13. The  dependence of D,  on the length L of the square network at  X , ,  in which 
diffusion into the dead-end pores has been taken into account.  

Several new results are immediately obtained from equation (64). If we employ 
the same method that we used to derive equation (59), then for any length scale 5 < 5, 
we may write d l 2 / d r  - 

d,= 6 (65) 
which should be compared with equation (59) and with d,  = 2 + 6, which is the fractal 
dimension of the fluid particles in the limit Pe + 0. Thus equation (65) implies that 
l2  - t2.3 and i2  - t '  I ,  in two- and three-dimensional systems, different from 1 2 -  t which 
is predicted by the CDE and equation (3). It also implies that the spectral dimension 
of the tracer particles is larger than two (Sahimi 1987), in contrast with the limit Pe + 0. 
Equation (63) also has some implications for the moments ( t " )  of the FPTD. If we 

and obtain C 2 -  f2'#, which means that 
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In L 
Figure 14. The dependence of D, on the length of the simple cubic network at X,, in 
which diffusion into the dead-end pores has been taken into account. 

neglect (t)' in equation (6) (which is supported by our simulations shown in figure 
15), we can rewrite it as ( t 2 )  - LDL/ V', which, in view of equation (63), yields 

( t 2 )  - ~ 3 + 2 8  (66) 
which is in agreement with the results of Koplik et al (1988). These authors have 
derived a general formula for ( t  "), which is given by 

(67) L n ( e + 2 ) - ~  

Therefore equation (67) predicts that ( t )  - Lei', which can also be obtained directly 
from equation (5). Note that, according to these formulae, the scaling of ( t " )  ( n  > 1) 
with L is not directly related to ( t )  (i.e. ( t " )  f ( t ) " )  which, as was mentioned in the 
introduction (see also Koplik et al 1988), is characteristic of anomalous dispersion 

Slcpe i l . 9  'or 0 3.5 4.0 In L 4 

Figure 15. The dependence of ( I " )  on the length L of the square network at X,. 
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(compare equations (50), (61) and (67)). If we use 6-0 .87  for two-dimensional 
networks, we obtain ( t )  - L'.87 and ( t 2 )  - L4.75, which indicate a large difference between 
the two moments of the FPTD. To test these formulae, we present in figure 15 the 
moments ( t )  and ( t ' )  and the results appear to be consistent with the predictions. 
Similar results were obtained for the simple cubic network (for which ( t ) -  L'.78 and 
( t 2 ) -  L6.55) and thus are not shown here. 

i i  
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Figure 16. Longitudinal dispersion coefficient D, in the wetting phase in Row through the 
cubic network. 

Finally, we propose that an equation similar to (60) should be valid for any 1g1< tP, 
if we use d ,  = 2d , /dw ,  vp = d w / ( d w  - 1) and v d  = d i '  = e- ' ,  where dF is the usual fractal 
dimension of the sample-spanning cluster. Our computer simulations support the 
validity of such a generalisation of equation (60), and since the agreement between 
simulations and the predictions is essentially as good as that shown in figure 11, they 
are not presented here. 

5. Dispersion in two-phase flow through porous media 

In the previous section, we studied dispersion in single-phase flow in porous media 
and investigated the effect of the disordered morphology ofthe pore space on dispersion. 
We now turn our attention to dispersion in flow of two immiscible fluids (e.g. oil and 
water) in a porous medium. Dispersion in multiphase flow depends strongly on the 
distribution of the immiscible phases in  the pore space. As the saturation of a phase, 
i.e. the volume fraction of the pore space occupied by the phase, decreases that phase 
may ultimately lose its connectivity because of disconnections brought about by 
capillary instability. Once a fluid phase loses its macroscopic connectivity, it occupies 
only isolated clusters of pores and its saturation falls below a percolation threshold. 
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Thus the process of displacing and disconnecting a fluid phase is essentially a percola- 
tion phenomenon. However, in contrast with random percolation in which a pore is 
selected at random and is disconnected from the sample-spanning cluster, a given 
phase does not lose its connectivity by a totally random process. In slow flow of two 
immiscible fluids, the velocity, capillarity and pore space morphology determine what 
space is occupied by a given phase and how this fluid phase loses its connectivity, if 
the porous medium is invaded by another immiscible fluid. 

A porous medium is strongly wet if the pore surfaces have a distinct preference 
for one of the fluids, the wetting fluid, to the other. In such a porous medium, the 
contact angle on the solid surface as measured through the wetting phase would be 
zero or nearly so. For intermediately wet porous media this contact angle is between 
50" and 140" (Morrow and McCaffery 1978). A mixed-wet porous medium is one in 
which some of the pores are strongly wet by one fluid and the other pores are strongly 
wet by the other fluid. The pressures PI and 8 of phases i and j are related to their 
saturation SI by capillary pressure P c ( S , ) ,  where P c ( S I )  = PI - 8. The capillary pressure 
P, is generally not zero because the interfacial tension exerts a pressure increase across 
the curved interface. The distribution of phases, the relative permeabilities and P, 
depend on the saturation of each phase, saturation history (i.e. the process by which 
that saturation has been reached), the morphology and wettability of the porous 
medium. In strongly wet media, if the saturation of the non-wetting phase increases 
because of its displacing the wetting phase, a process that is usually called drainage, 
it preferentially invades the larger pores that are accessible to it. On the other hand, 
if the saturation of the wetting phase increases because of its displacing the non-wetting 
phase, a process that is usually called imbibition, the wetting phase invades the smaller 
pores that are accessible to it. In intermediately wet porous media, the invading phase 
always occupies the largest accessible pores. These matters have been fully discussed 
by Heiba (1985). 

The above discussion indicates that, before dispersion in multiphase flow can be 
investigated, the two fluid distributions and the subset of pore space accessible to and 
occupied by a given phase must be determined. Two different procedures have been 
developed to accomplish this task. The first one is the so-called invasion percolation 
model (Chandler et a1 1982, Wilkinson and Willemsen 1983). In this model each site 
of a network is assigned a random number (which represents the resistance to flow), 
selected from a given PDF, and at each time step the site on the interface with the 
smallest random number is invaded by the invading fluid. This simulates the drainage 
process discussed above, because the largest pores off er the least resistance to an 
invading fluid. The process continues until the invading phase displaces enough fluid 
from the porous medium to reach the opposite surface of the medium. At this point 
and beyond one obtains the macroscopic distribution of the two immiscible fluids, 
both of which are flowing through the porous medium. One can then study dispersion 
in each of the fluid phases. As may be clear, invasion percolation is an inherently 
dynamical process. The second method, which was developed by Heiba (1985) (see 
also Heiba et a1 19821, uses the concepts of random percolation processes to model 
the distribution of immiscible fluids in porous media. Since random percolation 
processes are usually static phenomena, the model of Heiba (1985) is also a static one. 
We have used both methods and have obtained different results, which are discussed 
below. 

In the percolation theory of Heiba et a1 (1982) the key parameter defining the 
displacement in both drainage and imbibition is the capillary pressure. As drainage 
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proceeds, the current value of P, determines the minimum effective bond radius Rd 
of pores into which non-wetting fluid can penetrate. If we consider a strongly wet 
porous medium, then the total fraction x d  of bonds that are allowed to the non-wetting 
phase is given by 

x d = j  f ( R ) d R  (68) 

and the distribution of the radii of the bonds that are allowed to the non-wetting phase 
is 

OC 

Rd 

Similarly, the fraction of bonds that are invaded by the wetting phase during imbibition 
is given by 

X i =  loR' f ( R )  dR 

where Ri is the effective radius of the largest bond that is penetrated by the wetting 
phase. Therefore, in imbibition the distribution of the radii of bonds that are open to 
the wetting phase is 

R < R, 
R 2 R,  f, , , (  R )  = { f O ( R ) / X '  

Thus, the procedure to simulate dispersion in two-phase flow is as follows. We first 
distribute the effective radii of all bonds according to the distribution f( R ) .  We then 
identify all bonds, the effective radii of which are larger (smaller) than Rd ( R i ) ,  and 
set the effective radii of the remaining bonds to be zero. This creates the sample- 
spanning cluster of bonds that are occupied by the non-wetting (wetting) phase during 
drainage (imbibition). We then determine the flow field and perform our MC experi- 
ments of dispersion processes. Heiba (1985) gives formulae for the distributions of 
the effective radii of bonds that are occupied by different phases for intermediately 
wet and mixed-wet media, which can be used for MC simulations. 

In figure 16 we present the predicted longitudinal dispersion coefficient in the 
wetting phase during imbibition and drainage. We neglected the possibility of partition- 
ing of the tracer particles between phases, i.e. we allowed no mass transfer between 
the two phases. However, diffusion into the dead-end bonds and between the stream- 
lines in the smallest bonds was allowed. As can be seen, as the residual saturation 
S,, is approached, i.e. as the saturation at which the wetting phase loses its macroscopic 
connectivity is neared, the longitudinal dispersion coefficient appears to diverge. This 
is in agreement with the prediction of equation (63), which is expected because near 
S,, a relatively large number of bonds in the sample-spanning cluster are dead-end 
and, thus, according to equation (63), D ,  must diverge. In these simulations we 
neglected the thin films of the wetting fluid that can coat the surfaces of the pores 
occupied by the non-wetting phase. We found that, if we do not neglect such thin 
films, the behaviour of the longitudinal dispersion coefficient is different from that 
shown in figure 16. To take the effect of such thin films into account, we assumed that 
the surfaces of the pores that were occupied by the non-wetting phase are coated with 
a thin film of the wetting phase and we assigned a hydraulic conductance to such thin 
films in each pore that was small compared to the total hydraulic conductance of the 
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pore. One immediate effect of such thin films is that the wetting phase never loses its 
macroscopic connectivity and its apparent residual saturation S,, is essentially zero. 
We then observed that the longitudinal dispersion coefficient reaches a maximum at 
a wetting phase saturation S,-O.4 and then decreases and becomes very small as 
Sw+ 0. This is shown in figure 17. However, the contribution of such thin films to the 
hydraulic conductivity of the phase is very small. Therefore, the wettability characteris- 
tics of a porous medium and the presence of thin films can strongly affect dispersion 
processes in two-phase flow in porous media. Figure 17 is in qualitative agreement 
with some experimental data (e.g. Salter and Mohanty 1982) for porous media in 
which thin films were apparently important. 

Wetting phase saturation, 3, 

Figure 17. Longitudinal dispersion coefficient D, in the wetting phase, in the cubic network, 
in which the effect of thin films has been taken into account. 

As can be seen in figures 16 and 17, there is hysteresis in the values of DL. The 
reason for this is that the sets of pores that are occupied by the wetting phase during 
imbibition and drainage are different. Thus, one should expect different transit times 
and, therefore, different dispersion coefficients. Because of hysteresis in dispersion 
coefficients, the scaling laws for the dependence of dispersion coefficients on phase 
saturations near the residual saturations can be different from those derived in 0 4, 
which are in terms of the fraction X of open bonds, and they can also be different for 
each fluid phase during imbibition and drainage processes. Here, we develop scaling 
laws for the longitudinal dispersion coefficient. We derive the analogue of equation 
(63) for DL in two-phase flow through strongly wet porous media. For porous media 
with other types of wettability characteristics, one can use our method and develop 
the appropriate scaling laws. 

The main problem in deriving such scaling laws is to express the saturation of a 
given phase in terms of the fraction X of the open bonds. We first consider the 
drainage process and relate the saturation of the non-wetting phase S,,, to X .  To do 
this, we simply note that S,,, is the product of two factors. The first one is the ratio 
of the fraction of pores occupied by the non-wetting phase and the fraction of all 
pores that are allowed to this phase (i.e. those pores with a radius larger than Rd).  
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The second factor is the ratio of the volume of the pores that can be occupied by the 
non-wetting phase and the total volume of all pores in the porous medium. The first 
factor is clearly X A / X d  (since X A  is the fraction of the bonds in the sample-spanning 
clusters, i.e. the fraction of bonds that are invaded and occupied by the non-wetting 
phase). The second factor is j:d u ( R ) f ( R )  dR/ jF  u ( R ) f ( R )  dR, where v is the volume 
of a pore. It is often approximately true that the volume of a pore is independent of 
its effective radius. Under this assumption, the second factor is simply x d .  (Even if 
we do not make this assumption, it can be easily shown that the final result would be 
unchanged.) Therefore, we obtain 

which, when combined with equation (39) ,  yields, X - X , -  SA(+'. Since equation (63) 
is equivalent to D,- ( X  - x , ) ~ - ~ - ~ "  , we obtain the following result for the longitudinal 
dispersion coefficient in the non-wetting phase during drainage: 

which, for three-dimensional systems, is simplified to DL - Si:". The drainage process 
continues until the wetting phase saturation reaches its residual value S,,, at which 
point the wetting phase becomes disconnected. Since S, + S,, = 1, it is easy to see that 
S ,  - S,, - X - X ,  and therefore 

for the longitudinal dispersion coefficient in the wetting phase during drainage. For 
three-dimensional systems, equation (74) is simplified to DL- (S, - Swc)-0.19. In a 
similar fashion, we find that during imbibition one has 

which means that the longitudinal dispersion coefficient in the wetting phase during 
imbibition scales as 

(76) 
For three-dimensional systems, equation (76) reduces to D, - (S, - Swc)-0.'3, which is 
almost identical to the corresponding expression for the drainage process. The corre- 
sponding expression for the longitudinal dispersion coefficient in the non-wetting phase 
during imbibition becomes 

S,, - X A  (72)  

(73) ( w - P - 2 u ) l P  D, - S", 

D, - ( S ,  - Sw,)*-P-2" (74)  

s , - S , , - ( x - x , ) ' + ~  (75) 

DL- (Sw- s w c ) ( w - P - 2 v ) / ( 1 + P )  

DL-(S"w-snwc)~-~-2y  (77) 
where S,,, is the residual saturation of the non-wetting phase; for three-dimensional 
systems, equation (77) reduces to DL- (Sn,- Snwc)-0.19, which is totally different from 
its corresponding expression for the drainage process. This weak divergence of DL is 
in agreement with some experimental data (e.g., Delshad er al 1985) for porous media 
in which thin films were apparently not important. 

However, when we generated the fluid distributions according to the invasion 
percolation model, the relative permeability K appeared to decrease discontinuously 
(i.e. in a stepwise manner), except near the residual saturation (percolation threshold), 
where the permeability curve appears to become smooth, in contrast with the permeabil- 
ity of large percolation networks which decreases continuously. This is shown in figure 
18, where we present the relative permeability to the wetting phase during drainage. 
The pore size distribution used is f ( R )  = 2R exp(-R2) and the results are for a single 
realisation of a l o x  l o x  15 simple cubic network. This is in contrast with almost all 
of the available experimental data which show a continuous reduction of K as the 
residual saturation is approached. However, Thompson et a1 (1987) argued, by highly 
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Figure IS. Relative permeability to the wetting phase during drainage as a function of the 
wetting phase saturation. 

precise measurements, that mercury injection into a porous medium (which is essentially 
a two-phase flow problem similar to what is discussed here) and  permeability of the 
sample during this process do  not follow a usual percolation process, even though the 
shape and  the topology of the cluster of pores that are occupied by mercury can be 
described by percolation statistics. They have argued that mercury injection near the 
residual saturation is a kind of first-order phase transition, as opposed to the usual 
percolation processes which are second-order phase transitions. They have also pro- 
posed that the same type of phenomenon should occur for the permeabilities near the 
residual saturations (i.e. K must vanish discontinuously), so that one cannot write 
down a scaling law for K .  Their measurements are consistent with what we have 
observed in our simulations with the invasion percolation model with small networks. 
However, since our conductivity curve becomes smooth near the percolation threshold, 
we argue that this process is still a second-order phase transition and the usual scaling 
laws of percolation still apply. The stepwise reduction in the permeability is presumably 
caused by the finite size of the sample and  we expect that, as the size of the sample 
increases, the permeability curve should become smooth. Work is currently in progress 
to further investigate this and  we shall report our results in a future paper (Siddiqui 
and  Sahimi 1988). 

6. Summary and discussion 

We have investigated dispersion in flow through disordered porous media. We have 
found that the disordered morphology of the porous medium can strongly affect 
dispersion processes. Moreover, depending on the strength of molecular diffusion and 
the existence of stagnant regions in which the flow field vanishes, the dependence of 



Morphological disorder and hydrodynamic dispersion 3869 

dispersion coefficients on mean flow velocity V, can vary anywhere from V, to V i .  
We have found a length-dependent dispersion regime that cannot be described by a 
macroscopic convective-diffusion equation with constant dispersion coefficients. If  
the disordered topology of the porous media can be represented by percolation statistics, 
we can derive the appropriate scaling laws that relate dispersion coefficients to the 
length of the system. We have also proposed a generalisation of the Gaussian distribu- 
tion for describing dispersion in porous media, the length of which is less than a 
characteristic length. In such media the mean first passage time is less than a characteris- 
tic time that the tracer particles need to sample the microstructure of the media. 
Therefore, the convective-diff usion equation cannot adequately describe dispersion. 
Equation (60)  may be valid for dispersion in such porous media, provided that the 
proper values of the fractal dimension d ,  of the particles, which may not necessarily 
be identical with those for percolation systems discussed here, are used. 

In this paper we have studied dispersion processes in macroscopically 
homogeneous, microscopically disordered, porous media. An important problem is 
dispersion in porous media in which there are macroscopic heterogeneities in 
permeabilities and dispersion is caused by the chaotic velocity field which is a result 
of the contrast between permeabilities of different regions. Length-dependent disper- 
sion coefficients have been observed in such porous media (see, e.g., Molz er a1 1983, 
Arya et a1 1985). For example, Arya et a1 (1985) have reported that 

(78) 

where L is the length of the porous medium. Equation (78) is similar to anomalous 
dispersion that we find in percolation systems near X,. Moreover, the correlation 
length for permeability heterogeneities plays a role similar to the correlation length of 
percolation. Thus, we may expect dispersion coefficients in such porous media to 
increase with time faster than linearly, similar to our results for percolation systems. 
Although the topology of the porous media that can give rise to a dispersion coefficient 
that is given by (78) is not similar to that of a percolation cluster, equation (78) does 
indicate the possibility that some of the ideas developed in this paper may be applicable 
to the study of dispersion in heterogeneous porous media. We hope to report the 
results of such a study in a future paper. 

DL - L’ 75  
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